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Landauer Quantum Transport

Universal quantized conductivity formula
What is the channel conductivity, ie the current in atoms per
second per potential difference?

G = G0 ∑
n

tn

G = 1/(π h̄)

This is a universal law found with mesoscopic electronics,

and now with mesoscopic atomtronics.
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Dealing with atomic coherence in fermions

Hpw do we treat coherent phenomena with fermions?
Is there a coherent state for fermions?
Is there such a thing as a P-representation?
Can we efficiently compute ground states?
What about quantum transport?
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Ways to define coherent states

Definition 1: The coherent states |z〉 are eigenstates of the
annihilation operator a: â|z〉 = z |z〉.
Definition 2: The coherent states |z〉 are quantum states with
a minimum uncertainty relationship: ∆x∆p = h̄/2
Definition 3: The coherent states |z〉 can be obtained by
applying a displacement operator D(z) on the ground state of
harmonic oscillator:

|z〉 = D(z)|0〉,D(z) = exp(zâ†−z∗â)
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General coherent states from (3)

Can we generalize coherent states?

Consider T as a set of operators closed under commutation -
called a LIE ALGEBRA
Ie [Ti ,Tj ] = ∑k CijkTk

Define a continuous Lie group of operators
g (z) = exp(T ·z)

Let |ψo〉 be some fixed vector - the reference state
Then a general coherent state is the set of states
|z〉= exp(T ·z) |ψo〉
Can get different coherent states from different |ψo〉.
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Coherent states for fermions

Definition 1: Gives anticommuting Grassmann variables: if
â|z〉 = z |z〉, then a anti-commutes → z anti-commutes
Definition 2: Not always unique, and not a complete set
Definition 3:

Coherent states for fermions?

Consider |ψo〉= |1, . . .1,0, . . .0〉 as the N-particle ground
state
Let |z〉= exp

(
∑p,h â

†
pzphâh

)
|ψo〉

For every created particle (p) we create a hole (h)
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General phase-space approach

Expand density matrix in a complete basis of operators

ρ̂ =
∫

P(
−→
λ )Λ̂(

−→
λ )d
−→
λ

Phase-space may be larger still!

Here Λ̂(
−→
λ ) must be complete

Quantum dynamics →Trajectories in
−→
λ .

Different basis choice Λ̂(
−→
λ ) → different representation

Eg, positive P-representation: Λ̂(
−→
λ ) = |α〉〈β |/〈β | |α〉
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Trade-offs: distribution vs basis

ρ

σ
ρ

=

∼

P

σ
P

⊗

+

Λ

σ
Λ

P. D. Drummond Coherence and Phase-space IV



Fun with fermions: General Coherent States
General Gaussian Phase-space

Phase-space for warm bosons and fermions
Ground states of the Fermi-Hubbard model

General Gaussian operator

General Gaussian operators give a complete basis in all cases
Normally-ordered exponential of a quadratic form in the 2M-vector
mode operator δ â = (â, â†)−α , where α is a c-vector and â is the
vector of annihilation operators. Used for either bosons or fermions:

Λ̂(
−→
λ ) =

Ω√∣∣∣σ ∣∣∣ : exp
[
−δ â†

σ
−1

δ â/2
]

: .

Quantum phase-space:
−→
λ = (Ω,α,σ).
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What is the covariance?

The covariance matrix acts as a ‘stochastic Green’s function’

σ =

[
I+n m
m+ I+nT

]
.

Eg, fermion case: representation phase space is
−→
λ = (Ω,n,m,m+)

Ω= weight factor
n = number correlation - OBSERVABLE
m,m+= anomalous correlation - OBSERVABLE
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Weighted stochastic gauge equations

Exponential quantum problems → tractable stochastic
equations

dΩ/∂ t = Ω[U + g ·ζζζ ]
dααα/∂ t = A+B(ζζζ − g)

Can be used for fermions AND bosons
Can be used in imaginary time for finite temperatures
g is a gauge chosen to stabilize trajectories
A careful choice of basis, gauge and stochastic method is
necessary
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BOSONIC INITIAL ENSEMBLES

Nonlinear interactions at each site + linear interactions coupling
different sites:

Ĥ(a,a†) = h̄
[
∑∑ωija

†
i aj + ∑ : n̂2

j :
]
.

ωij - nonlocal coupling, includes chemical potential.

Boson number: n̂i = a†
i ai .

General approach also holds for quantum fields
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A: ONE-DIMENSION, FINITE TEMPERATURE

dα

dτ
= −

[
|αβ

∗|+ ω−∇
2 + iζ1(τ)

]
α

dβ

dτ
= −

[
|αβ

∗|+ ω−∇
2 + iζ2(τ)

]
β

dΩ

dτ
= −HΩ +gauge terms

weighted Gross-Pitaevskii equation + quantum noise
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ONE-DIMENSIONAL BEC
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Uses imaginary time propagation to get a finite temperature
Agreement of simulations with exact solutions

P. D. Drummond Coherence and Phase-space IV



Fun with fermions: General Coherent States
General Gaussian Phase-space

Phase-space for warm bosons and fermions
Ground states of the Fermi-Hubbard model

Predicts: anomalous spatial correlations
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1 Dimensional interacting Bose Gas                
interaction strength c = 1                        
                                                  
z(T)=e

µ/T
 = z

o
+(z

π
−z−o)[ 1−cos(1/T) ]/2

z
o
 = exp(−8)                                     

z
π
 = exp(−1)                                 

25 000 trajectories                               

∆t = 0.005      

Lattice Size = 750
System Length = 180                             
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INTERACTING FERMIONS

Ĥ =−∑
ij ,σ

tij â
†
i ,σ âj ,σ +U∑

j

: n̂j ,j ,�n̂j ,j ,� :

Hubbard model of an interacting Fermi gas on a lattice
Ultracold gas in an optical lattice: experiments at ETH, Zurich

Weak-coupling limit → BCS transitions
Relevance to high-Tc superconductors?
Universal fermionic behavior - neutron star interiors?
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QMC sign problem

Traditional fermionic Quantum Monte Carlo (QMC) suffers
from sign problems:

〈A〉 ∼ 〈sA〉〈s〉

sign problem increases with:

dimension,
lattice size,
interaction strength
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Finite-temperature phase-space equations

Paths: dnσ

dτ
= 1

2

{
(I−nσ )T

(1)
σ nσ +nσT

(2)
σ (I−nσ )

}
.

Weights: dΩ
dτ

=−ΩH(n1,n−1)

T-matrix:
T

(r)
i ,j ,σ = tij −δi ,j

{
U(nj ,j ,−σ −nj ,j ,σ + 1

2 )−µ + σξ
(r)
j

}
.

Noises:
〈

ξ
(r)
j (τ)ξ

(r ′)
j ′ (τ ′)

〉
= 2Uδ (τ− τ ′)δj ,j ′δr ,r ′ .
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A: 1D Lattice - 100 sites vs: exact result
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B: 16x16 2D Lattice
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IMADA ALGORITHM

Imada improved on the original Gaussian method

Used number projections to reduce the size of Hilbert space

Importance sampling helps to improve statistics
No evidence of a Fermi ‘sign’ problem
No evidence of boundary term problems
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Imada algorithm test case - two sites
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Imada algorithm test case - tail exponent = -4
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Imada algorithm Hubbard model: no pairing
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Summary

Gaussian phase-space extends to fermions

Provides a new way to treat strongly correlated systems

Predicts no long-range order in Hubbard model
Apparently NOT the explanation of high Tc superconductors
To be tested in atomic Fermi gas experiments
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