Coherence and Phase-space IV VSSUP Lectures 2014

P. D. Drummond

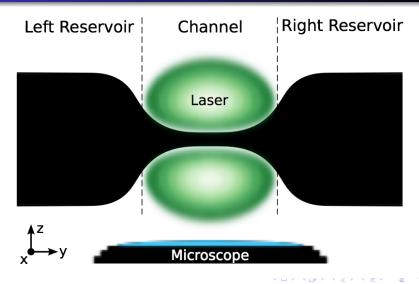
January 23, 2014

< ロ > < 同 > < 三 >

Outline

- 2 General Gaussian Phase-space
- 3 Phase-space for warm bosons and fermions
- 4 Ground states of the Fermi-Hubbard model

Mesoscopic cold atoms (Esslinger 2012)



Landauer Quantum Transport

Universal quantized conductivity formula

What is the channel conductivity, ie the current in atoms per second per potential difference?

 $G = G_0 \sum_n t_n$ $G = 1/(\pi\hbar)$

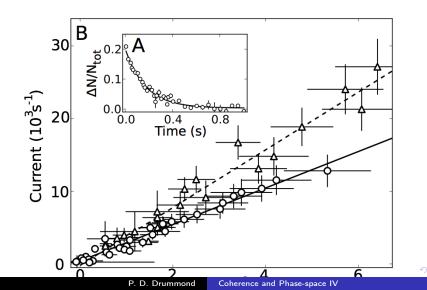
 This is a universal law found with mesoscopic electronics, and now with mesoscopic atomtronics.

・ロト ・ 同ト ・ ヨト ・

Fun with fermions: General Coherent States

General Gaussian Phase-space Phase-space for warm bosons and fermions Ground states of the Fermi-Hubbard model

Mesoscopic cold atoms (Esslinger 2012)



Fun with fermions: General Coherent States General Gaussian Phase-space

Phase-space for warm bosons and fermions Ground states of the Fermi-Hubbard model

Dealing with atomic coherence in fermions

Hpw do we treat coherent phenomena with fermions?

- Is there a coherent state for fermions?
- Is there such a thing as a P-representation?
- Can we efficiently compute ground states?
- What about quantum transport?

Ways to define coherent states

- Definition 1: The coherent states |z⟩ are eigenstates of the annihilation operator a: â|z⟩ = z|z⟩.
- Definition 2: The coherent states $|z\rangle$ are quantum states with a minimum uncertainty relationship: $\Delta x \Delta p = \hbar/2$
- Definition 3: The coherent states |z> can be obtained by applying a displacement operator D(z) on the ground state of harmonic oscillator:

$$|z\rangle = D(z)|0\rangle, D(z) = exp(z\hat{a}^{\dagger}-z^{*}\hat{a})$$

General coherent states from (3)

Can we generalize coherent states?

• Consider **T** as a set of operators closed under commutation - called a **LIE ALGEBRA**

• le
$$[T_i, T_j] = \sum_k C_{ijk} T_k$$

- Define a continuous Lie group of operators $g(z) = \exp(T \cdot z)$
- Let $|\psi_o
 angle$ be some fixed vector the *reference* state
- Then a general coherent state is the set of states $|\mathbf{z}
 angle = \exp{(\mathbf{T}\cdot\mathbf{z})}|\psi_o
 angle$
- Can get different coherent states from different $|\psi_o
 angle$.

Coherent states for fermions

- Definition 1: Gives anticommuting Grassmann variables: if $\hat{a}|z\rangle = z|z\rangle$, then *a* anti-commutes \rightarrow z anti-commutes
- Definition 2: Not always unique, and not a complete set
- Definition 3:

Coherent states for fermions?

- Consider $|\psi_o\rangle = |1,\ldots 1,0,\ldots 0\rangle$ as the N-particle ground state
- Let $|\mathbf{z}
 angle=\exp\left(\sum_{
 ho,h}\hat{a}_{
 ho}^{\dagger}z_{
 hoh}\hat{a}_{h}
 ight)|\psi_{o}
 angle$
- For every created particle (p) we create a hole (h)

・ロト ・ 同ト ・ ヨト ・ ヨト - -

General phase-space approach

Expand density matrix in a complete basis of operators

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\,\overrightarrow{\lambda}$$

Phase-space may be larger still!

- Here $\widehat{\Lambda}(\overrightarrow{\lambda})$ must be complete
- Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.
- Different basis choice $\widehat{\Lambda}(\overrightarrow{\lambda}) \rightarrow \text{different representation}$
- Eg, positive P-representation: $\widehat{\Lambda}(\overrightarrow{\lambda}) = |\alpha\rangle \langle \beta| / \langle \beta| |\alpha\rangle$

< □ > < 同 > < 回 > <</p>

General phase-space approach

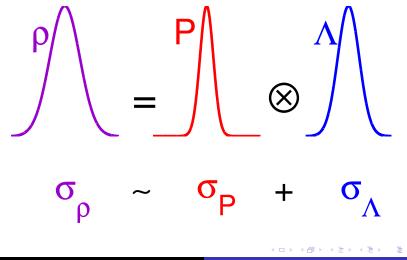
Expand density matrix in a complete basis of operators

$$\widehat{\rho} = \int P(\overrightarrow{\lambda}) \widehat{\Lambda}(\overrightarrow{\lambda}) d\,\overrightarrow{\lambda}$$

Phase-space may be larger still!

- Here $\widehat{\Lambda}(\overrightarrow{\lambda})$ must be complete
- Quantum dynamics \rightarrow Trajectories in $\overrightarrow{\lambda}$.
- Different basis choice $\widehat{\Lambda}(\overrightarrow{\lambda}) \rightarrow \text{different representation}$
- Eg, positive P-representation: $\widehat{\Lambda}(\overrightarrow{\lambda}) = |\alpha\rangle \langle \beta| / \langle \beta| |\alpha\rangle$

Trade-offs: distribution vs basis



General Gaussian operator

General Gaussian operators give a complete basis in all cases

Normally-ordered exponential of a quadratic form in the 2*M*-vector mode operator $\delta \hat{\underline{a}} = (\hat{a}, \hat{a}^{\dagger}) - \underline{\alpha}$, where $\underline{\alpha}$ is a c-vector and \hat{a} is the vector of annihilation operators. Used for either bosons or fermions:

$$\widehat{\Lambda}(\overrightarrow{\lambda}) = rac{\Omega}{\sqrt{\left|\underline{\sigma}\right|}} : \exp\left[-\delta \widehat{\underline{a}}^{\dagger} \underline{\sigma}^{-1} \delta \widehat{\underline{a}}/2\right] :$$

Quantum phase-space: $\overrightarrow{\lambda} = (\Omega, \underline{\alpha}, \underline{\sigma}).$

What is the covariance?

The covariance matrix acts as a 'stochastic Green's function'

$$\underline{\underline{\sigma}} = \left[\begin{array}{cc} \mathbf{I} + \mathbf{n} & \mathbf{m} \\ \mathbf{m}^+ & \mathbf{I} + \mathbf{n}^T \end{array} \right] \,.$$

Eg, fermion case: representation phase space is $\lambda = (\Omega, n, m, m^+)$

- Ω = weight factor
- **n** = number correlation OBSERVABLE
- \mathbf{m}, \mathbf{m}^+ = anomalous correlation OBSERVABLE

What is the covariance?

The covariance matrix acts as a 'stochastic Green's function'

$$\underline{\underline{\sigma}} = \begin{bmatrix} \mathbf{I} + \mathbf{n} & \mathbf{m} \\ \mathbf{m}^+ & \mathbf{I} + \mathbf{n}^T \end{bmatrix}.$$

Eg, fermion case: representation phase space is $\lambda = (\Omega, n, m, m^+)$

- Ω = weight factor
- **n** = number correlation OBSERVABLE
- m, m⁺ = anomalous correlation OBSERVABLE

Weighted stochastic gauge equations

Exponential quantum problems \rightarrow tractable stochastic equations

$$d\Omega/\partial t = \Omega[U + \mathbf{g} \cdot \boldsymbol{\zeta}]$$
$$d\boldsymbol{\alpha}/\partial t = \mathbf{A} + \mathbf{B}(\boldsymbol{\zeta} - \mathbf{g})$$

- Can be used for fermions AND bosons
- Can be used in imaginary time for finite temperatures
- g is a gauge chosen to stabilize trajectories
- A careful choice of basis, gauge and stochastic method is necessary

BOSONIC INITIAL ENSEMBLES

Nonlinear interactions at each site + linear interactions coupling different sites:

- $\widehat{H}(\mathbf{a}, \mathbf{a}^{\dagger}) = \hbar \left[\sum \sum \omega_{ij} a_i^{\dagger} a_j + \sum : \widehat{n}_j^2 : \right]$.
- ω_{ij} nonlocal coupling, includes chemical potential.
- Boson number: $\hat{n}_i = a_i^{\dagger} a_i$.
- General approach also holds for quantum fields

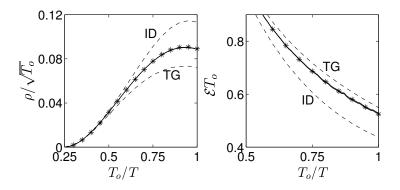
A: ONE-DIMENSION, FINITE TEMPERATURE

$$\frac{d\alpha}{d\tau} = -\left[|\alpha\beta^*| + \omega - \nabla^2 + i\zeta_1(\tau)\right]\alpha$$
$$\frac{d\beta}{d\tau} = -\left[|\alpha\beta^*| + \omega - \nabla^2 + i\zeta_2(\tau)\right]\beta$$
$$\frac{d\Omega}{d\tau} = -H\Omega + gauge \ terms$$

• weighted Gross-Pitaevskii equation + quantum noise

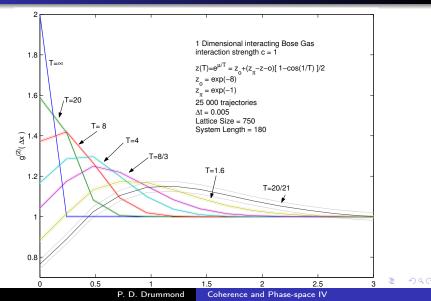
・ロト ・同ト ・ヨト ・ヨト

ONE-DIMENSIONAL BEC



Uses imaginary time propagation to get a finite temperature Agreement of simulations with exact solutions

Predicts: anomalous spatial correlations



INTERACTING FERMIONS

$$\widehat{H} = -\sum_{ij,\sigma} t_{ij} \widehat{a}_{i,\sigma}^{\dagger} \widehat{a}_{j,\sigma} + U \sum_{j} : \widehat{n}_{j,j,\downarrow} \widehat{n}_{j,j,\uparrow} :$$

- Hubbard model of an interacting Fermi gas on a lattice
- Ultracold gas in an optical lattice: experiments at ETH, Zurich
 - \bullet Weak-coupling limit \rightarrow BCS transitions
 - Relevance to high-*T_c* superconductors?
 - Universal fermionic behavior neutron star interiors?

QMC sign problem

• Traditional fermionic Quantum Monte Carlo (QMC) suffers from sign problems:

$$\langle A
angle \sim rac{\langle sA
angle}{\langle s
angle}$$

- sign problem increases with:
 - dimension,
 - lattice size,
 - interaction strength

< D > < P > < P > < P >

Finite-temperature phase-space equations

• Paths:
$$\frac{d\mathbf{n}_{\sigma}}{d\tau} = \frac{1}{2} \left\{ \left(\mathbf{I} - \mathbf{n}_{\sigma}\right) T_{\sigma}^{(1)} \mathbf{n}_{\sigma} + \mathbf{n}_{\sigma} T_{\sigma}^{(2)} \left(\mathbf{I} - \mathbf{n}_{\sigma}\right) \right\}.$$

• Weights:
$$\frac{d\Omega}{d\tau} = -\Omega H(\mathbf{n}_1, \mathbf{n}_{-1})$$

• T-matrix:

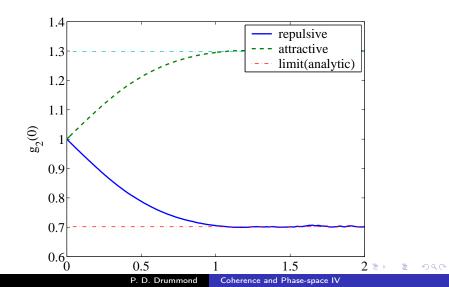
$$T_{i,j,\sigma}^{(r)} = t_{ij} - \delta_{i,j} \left\{ U(n_{j,j,-\sigma} - n_{j,j,\sigma} + \frac{1}{2}) - \mu + \sigma \xi_j^{(r)} \right\}.$$

• Noises:
$$\left\langle \xi_{j}^{(r)}(\tau)\xi_{j'}^{(r')}(\tau')\right\rangle = 2U\delta(\tau-\tau')\delta_{j,j'}\delta_{r,r'}$$
.

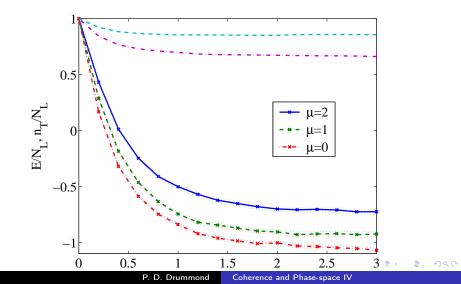
э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A: 1D Lattice - 100 sites vs: exact result



B: 16x16 2D Lattice

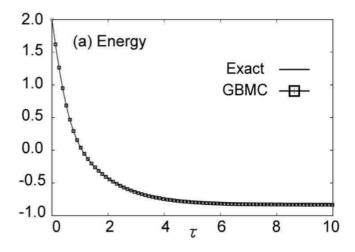


IMADA ALGORITHM

Imada improved on the original Gaussian method

- Used number projections to reduce the size of Hilbert space
 - Importance sampling helps to improve statistics
 - No evidence of a Fermi 'sign' problem
 - No evidence of boundary term problems

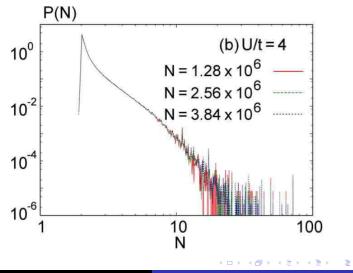
Imada algorithm test case - two sites



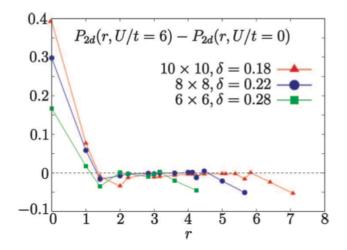
< ロ > < 同 > < 回 > <

э

Imada algorithm test case - tail exponent = -4



Imada algorithm Hubbard model: no pairing



Gaussian phase-space extends to fermions

- Provides a new way to treat strongly correlated systems
 - Predicts no long-range order in Hubbard model
 - Apparently NOT the explanation of high Tc superconductors
 - To be tested in atomic Fermi gas experiments