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@ Fun with fermions: General Coherent States
© General Gaussian Phase-space
© Phase-space for warm bosons and fermions

@ Ground states of the Fermi-Hubbard model
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Fun with fermions: General Coherent States

Mesoscopic cold atoms (Esslinger 2012)
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Fun with fermions: General Coherent States

Landauer Quantum Transport

Universal quantized conductivity formula

What is the channel conductivity, ie the current in atoms per
second per potential difference?

G= G()Ztn

G =1/(rh)

@ This is a universal law found with mesoscopic electronics,

and now with mesoscopic atomtronics.
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Fun with fermions: General Coherent States

Mesoscopic cold atoms (Esslinger 2012)
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Fun with fermions: General Coherent States

Dealing with atomic coherence in fermions

Hpw do we treat coherent phenomena with fermions?
@ Is there a coherent state for fermions?
@ Is there such a thing as a P-representation?
o Can we efficiently compute ground states?
o What about quantum transport?
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Fun with fermions: General Coherent States

Ways to define coherent states

@ Definition 1: The coherent states |z) are eigenstates of the
annihilation operator a: 4|z) = z|z).

@ Definition 2: The coherent states |z) are quantum states with
a minimum uncertainty relationship: AxAp = /2

@ Definition 3: The coherent states |z) can be obtained by
applying a displacement operator D(z) on the ground state of
harmonic oscillator:

|z) = D(2)|0), D(2) = exp(z5"—z*3)

P. D. Drummond Coherence and Phase-space IV



Fun with fermions: General Coherent States

General coherent states from (3)

Can we generalize coherent states?

e Consider T as a set of operators closed under commutation -
called a LIE ALGEBRA

le [T, T;] = Xk Cijx Tk

@ Define a continuous Lie group of operators
g(z) =exp(T-2)

Let |w,) be some fixed vector - the reference state

Then a general coherent state is the set of states
2) = exp(T-2)[yo)
Can get different coherent states from different |y,).
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Fun with fermions: General Coherent States

Coherent states for fermions

@ Definition 1: Gives anticommuting Grassmann variables: if
d|z) = z|z), then a anti-commutes — z anti-commutes

@ Definition 2: Not always unique, and not a complete set

@ Definition 3:

Coherent states for fermions?

o Consider |y,) =1,...1,0,...0) as the N-particle ground
state

o Let |z) =exp (th §Zzph§h) Vo)
@ For every created particle (p) we create a hole (h)
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General Gaussian Phase-space

General phase-space approach

Expand density matrix in a complete basis of operators

/P T)dx
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General Gaussian Phase-space

General phase-space approach

Expand density matrix in a complete basis of operators
/ P(X)NZ)d X

Phase-space may be larger still!

v

~ =
Here A(A ) must be complete

Quantum dynamics — Trajectories in A .

~
o Different basis choice A(4) — different representation

Eg, positive P-representation: A(4 ) = |&) (B]/ (B||e)
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Genera | Gaussian Phase-s pace

Trade-offs: distribution vs basis
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General Gaussian Phase-space

General Gaussian operator

General Gaussian operators give a complete basis in all cases

Normally-ordered exponential of a quadratic form in the 2M-vector

mode operator §3 = (a,a’) — & , where « is a c-vector and a is the

vector of annihilation operators. Used for either bosons or fermions:
~ = Q o 3R

ANA)=——:exp [—652716§/2} s

<

%
Quantum phase-space: 1 =(Q,a,0).
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General Gaussian Phase-space

The covariance matrix acts as a ‘stochastic Green's function’
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General Gaussian Phase-space

The covariance matrix acts as a ‘stochastic Green's function’

Eg, fermion case: representation phase space is

e Q= weight factor
@ n = number correlation - OBSERVABLE
@ m,m"= anomalous correlation - OBSERVABLE
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General Gaussian Phase-space

Exponential quantum problems — tractable stochastic
equations

dQ/dt=Q[U+ g -]
da/dt=A+B({ -

e Can be used for fermions AND bosons
@ Can be used in imaginary time for finite temperatures
@ g is a gauge chosen to stabilize trajectories

@ A careful choice of basis, gauge and stochastic method is
necessary
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Phase-space for warm bosons and fermions

Nonlinear interactions at each site + linear interactions coupling
different sites:

o H(a,a")=h|YYwjaaj+Y: ne

@ wj - nonlocal coupling, includes chemical potential.

@ Boson number: n; = aja; .

@ General approach also holds for quantum fields
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Phase-space for warm bosons and fermions

Z—g = —[lap*|+o—-V>+ili(7)] a
Boo e oV it)p
% — _HQ+

o weighted Gross-Pitaevskii equation + quantum noise
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Phase-space for warm bosons and fermions

ONE-DIMENSIONAL BEC
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Uses imaginary time propagation to get a finite temperature
Agreement of simulations with exact solutions
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Phase-space for warm bosons and fermions

2
1 Dimensional interacting Bose Gas
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Phase-space for warm bosons and fermions

L IS Lo .
H=— Z t,-J-a,-,GaLg + UZ TNigNga
J

Ne

=

@ Hubbard model of an interacting Fermi gas on a lattice
@ Ultracold gas in an optical lattice: experiments at ETH, Zurich

e Weak-coupling limit — BCS transitions
e Relevance to high- T, superconductors?
e Universal fermionic behavior - neutron star interiors?
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Phase-space for warm bosons and fermions

e Traditional fermionic Quantum Monte Carlo (QMC) suffers
from sign problems:

@ sign problem increases with:

e dimension,
o lattice size,
e interaction strength
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Phase-space for warm bosons and fermions

e Paths: % =3 {(I —ng) Tg,l)nc +nGT£,2)(I - ng)}.

o Weights: % =—QH(n1,n_;)

e T-matrix:
T = ti— 8, {Ulnjj-o—njjo+3)—n+0g}.
o Noises: <§j(r)(f)§j(,r/)(7’)> =2Ud(t—1')8;56, .
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Phase-space for warm bosons and fermions
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Phase-space for warm bosons and fermions
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Ground states of the Fermi-Hubbard model

Imada improved on the original Gaussian method

@ Used number projections to reduce the size of Hilbert space

e Importance sampling helps to improve statistics
o No evidence of a Fermi 'sign’ problem
o No evidence of boundary term problems
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Ground states of the Fermi-Hubbard model
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Ground states of the Fermi-Hubbard model

0 \ (b)Ult=4

107 ¢ AN 6
SN N=1.28x10° —
o | . N=286x10°
107 S N=3.84x108 o]
4

-4

10 |

-6

10

1

P. D. Drummond Coherence and Phase-space IV



Ground states of the Fermi-Hubbard model
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Ground states of the Fermi-Hubbard model

Gaussian phase-space extends to fermions

@ Provides a new way to treat strongly correlated systems

e Predicts no long-range order in Hubbard model
o Apparently NOT the explanation of high Tc superconductors
o To be tested in atomic Fermi gas experiments
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